# Lead sheet and Multi-track Piano-roll generation using MuseGAN

Hao-Min Liu, Hao-Wen Dong, Wen-Yi Hsiao, Yi-Hsuan Yang





Music and Al Lab, Research Centre for IT Innovation, Academia Sinica, Taipei, Taiwan

This work is based on our previous AAAI'18 paper.

Introduction

#### Challenges for music generation

- Temporal dynamics:
   music is an art of time with
   a hierarchical structure
- Multi-track: each track has its own temporal dynamics but collectively they unfold over time in an interdependent way



Figure 1. Hierarchical temporal structure of music

MuseGAN (<u>multi-track sequential generative adversarial network</u>) [1] aims to address these challenges altogether. Key points:

- Use **GAN** (specifically WGAN-GP [2]) to support both "conditional generation" (e.g. following a prime melody) and "generating from scratch", following our previous MidiNet model.
- Use convolutions (instead of RNNs) for speed
- Learn from MIDIs & Lead Sheet XMLs (using piano-rolls)

## Data

#### **Dataset**

The matched subset of the Lakh MIDI dataset

- Pop/rock, 4/4 time signature, C key
- Five tracks: bass, drums, guitar, piano, strings (others)
- Get 201,064 bars to form 4-bar phrases

Hooktheory XML dataset, after cleansing

- Pop/rock, 4/4 time signature, C key
- Two tracks: melody and chord
- Get 138,792 bars to form 8-bar phrases

#### Data representation

- Notes: 84 pitches (24-108)
- Phrase: 4 bars
- Bar: 96 time steps
- Tracks: 5 instruments



Figure 2. Multi-track piano-roll representation

## Proposed Model

#### Modeling the multi-track interdependency

 Each track is generated independently by its own generator which takes a shared inter-track random vector and a private intra-track random vector as inputs; the result is evaluated by one single discriminator



Figure 3. Hybrid model generator, combining the idea of jamming and composing

#### MuseGAN architecture



Figure 4. System diagram of the proposed MuseGAN model

## Results

#### **Training process**

The training time for each model is for each model is less than 24 hours with a Tesla K40m GPU.



Figure 5: Evolution of a generated phrase

#### **User study**

- **H:** harmonious
- R: rhythmic
- MS: musical structure
- C: coherent
- OR: overall rating

## Table 1: Result of user study H R MS C

| • | from | non-<br>pro | jam.   | 2.83 | 3.29 | 2.88 | 2.84 | 2.88 |
|---|------|-------------|--------|------|------|------|------|------|
|   |      |             | comp.  | 3.12 | 3.36 | 2.95 | 3.13 | 3.12 |
|   |      |             | hybrid | 3.15 | 3.33 | 3.09 | 3.30 | 3.16 |
|   |      | pro         | jam.   | 2.31 | 3.05 | 2.48 | 2.49 | 2.42 |
|   |      |             | comp.  | 2.66 | 3.13 | 2.68 | 2.63 | 2.73 |
|   |      |             | hybrid | 2.92 | 3.25 | 2.81 | 3.00 | 2.93 |
| ' |      |             |        |      |      |      |      |      |

## Visualization

#### Lead sheet application





igaro oi Loda orioot piarro i

Figure 6. Lead sheet piano roll sample Figure 7. Lead sheet score sample

#### Interpolation



Figure 8. Spherical linear interpolation as a 4x4 matrix

### Conclusion

- A new convolutional GAN model is proposed for creating multi-track sequences; we use it to generate pianorolls of pop/rock music by learning from a large set of MIDI and XML.
- Lead sheet generation using MuseGAN with piano-roll form could capture related transitions from chord to chord.

#### References

[1] Hao-Wen Dong, Wen-Yi Hsiao, Li-Chia Yang, and Yi-Hsuan Yang. MuseGAN: Multi-track Sequential Generative Adversarial Networks for Symbolic Music Generation and Accompaniment. in *Proc. AAAI Conf. Artificial Intelligence (AAAI)*, 2018.

[2] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron Courville. Improved training of Wasserstein GANs. In *NIPS*, 2017.